A comparative study of two modeling approaches in neural networks

نویسندگان

  • Zongben Xu
  • Hong Qiao
  • Jigen Peng
  • Bo Zhang
چکیده

The neuron state modeling and the local field modeling provides two fundamental modeling approaches to neural network research, based on which a neural network system can be called either as a static neural network model or as a local field neural network model. These two models are theoretically compared in terms of their trajectory transformation property, equilibrium correspondence property, nontrivial attractive manifold property, global convergence as well as stability in many different senses. The comparison reveals an important stability invariance property of the two models in the sense that the stability (in any sense) of the static model is equivalent to that of a subsystem deduced from the local field model when restricted to a specific manifold. Such stability invariance property lays a sound theoretical foundation of validity of a useful, cross-fertilization type stability analysis methodology for various neural network models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review and Classification of Modeling Approaches of Soil Hydrology Processes

To use soil hydrology processe (SHP) models, which have increasingly extended during the last years, comprehensive knowledge about these models and their modeling approaches seems to be necessary. The modeling approaches can be categorized as either classical or non-classical. Classical approaches mainly model the SHP through solving the general unsaturated flow (Richards) equation, numerically...

متن کامل

Review and Classification of Modeling Approaches of Soil Hydrology Processes

To use soil hydrology processes (SHP) models, which have increasingly extended during the last years, comprehensive knowledge about these models and their modeling approaches seems to be necessary. The modeling approaches can be categorized as either classical or non-classical. Classical approaches mainly model the SHP through solving the general unsaturated flow (Richards) equation, numericall...

متن کامل

Modeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)

Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...

متن کامل

Forecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System

Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...

متن کامل

 The Quantification of Uncertainties in Production Prediction Using Integrated Statistical and Neural Network Approaches: An Iranian Gas Field Case Study

Uncertainty in production prediction has been subject to numerous investigations. Geological and reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is worthy to present the desired quantity with a probability distribution instead of a sing...

متن کامل

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2004